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EXACT SOLUTIONS OF THE HYDRODYNAMIC EQUATIONS

DERIVED FROM PARTIALLY INVARIANT SOLUTIONS

UDC 532.511+517.9V. V. Pukhnachev

The paper proposes a heuristic approach to constructing exact solutions of the hydrodynamic equations
based on the specificity of these equations. A number of systems of hydrodynamic equations possess
the following structure: they contain a “reduced” system of n equations and an additional equation
for an “extra” function w. In this case, the “reduced” system, in which w = 0, admits a Lie group G.
Taking a certain partially invariant solution of the “reduced” system with respect to this group as
a “seed” solution, we can find a solution of the entire system, in which the functional dependence
of the invariant part of the “seed” solution on the invariants of the group G has the previous form.
Implementation of the algorithm proposed is exemplified by constructing new exact solutions of the
equations of rotationally symmetric motion of an ideal incompressible liquid and the equations of
concentrational convection in a plane boundary layer and thermal convection in a rotating layer of a
viscous liquid.
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1. Extension of the Set of Exact Solutions of the Hydrodynamic Equations. Many systems of
hydrodynamic equations have the following specific structure:

L1(u1, . . . , un) + w = 0, Lk(u1, . . . , un) = 0, k = 2, . . . , n, Λ(u1, . . . , un, w) = 0, (1.1)

and Λ(u1, . . . , un, 0) = 0 for any u = (u1, . . . , un) ∈ Rn. Here L1, . . . , Ln, and Λ are differential operators (generally,
nonlinear) acting on the variables x = (x1, . . . , xm) ∈ Rm.

Along with Eq. (1.1), we consider the “reduced” system

Lj(u1, . . . , un) = 0, j = 1, . . . , n. (1.2)

We assume that system (1.2) admits a local Lie group G acting in a space Rm+n and there is a partially invariant
solution of system (1.2) with respect to the group G of the form

ui = ϕi(I1, . . . , Il), i = 1, . . . , k < n, uj = ψj(x1, . . . , xm), j = k + 1, . . . , n, (1.3)

where I1, . . . , Il (l < m) are the invariants of the group G that depend only on x1, . . . , xm. (Definition and procedure
of constructing partially invariant solutions of a system of differential equations are given in [1].)

We substitute the expressions ui = Φi(I1, . . . , Il), uj = Ψj(x1, . . . , xm) (Φi and Ψj are new a priori unknown
functions) into system (1.1). Since the function w is explicitly expressed from the first equation of this system in
terms of Φi and Ψj , we in fact obtain n equations that relate new desired functions. These equations should
be supplemented with the differential relations expressing the invariance of the functions Φi with respect to the
group G.

The overdetermined system of equations obtained is a priori compatible because it has a solution in which
ui and uj are represented in the form of (1.3) and w = 0. However, this system can also have “nontrivial” solutions.
Below, we give three examples of such situations.
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2. Rotationally Symmetric Motion of an Ideal Incompressible Liquid. In this section, u, v, and w
are the projections of the velocity vector onto the r, θ, and z cylindrical coordinate axes, respectively, p is the
liquid pressure, and ρ is the density. Instead of v, it is convenient to introduce a new desired function Ω = (rv)2,
which is the squared rotational velocity circulation. In the adopted notation, the system of equations of rotationally
symmetric motion for an ideal incompressible liquid is written as

r3(ut + uur + wuz + ρ−1pr)− Ω = 0,
(2.1)

wt + uwr + wwz + ρ−1pz = 0, ur + r−1u+ wz = 0, Ωt + uΩr + wΩz = 0.

The corresponding “reduced” system is formed by the first three equations in system (2.1):

ut + uur + wuz + ρ−1pr = 0,

wt + uwr + wwz + ρ−1pz = 0, ur + r−1u+ wz = 0,
(2.2)

and Ω plays the role of an “extra” function in Eq. (2.1). System (2.2) admits a three-parameter group G, whose
Lie algebra is formed by operators {∂z, t∂z + ∂w, ∂p}. The complete set of functionally independent invariants of
the group G can be chosen in the form

I1 = r, I2 = t, I3 = u.

Since the rank of the set of the functions I1, I2, and I3 with respect to the variables u, w, and p is zero, i.e., smaller
than the number of desired functions in Eq. (2.2), invariant solutions of this system with respect to the group G do
not exist. However, one can seek partially invariant solutions of system (2.2) with respect to the specified group,
assuming that u = u(r, t). Then, it follows from the third equation of system (2.2) that

w = ψ(r, t)z + ϕ(r, t),

where

ψ = −ur − r−1u. (2.3)

Substitution of the expressions for u and w into the second equation of system (2.2) allows integration of this
equation over z, which yields the following representation of the function p

−p/ρ = (ψt + uψr + ψ2)z2/2 + (ϕt + uϕr + ϕψ)z + χ,

where χ(r, t) is the new desired function. Substituting the representations of u, w, and p into the first equation
of system (2.2), we find that the left side of the resulting relation is a quadratic trinomial in z. Equating the
coefficients of this trinomial to zero, we obtain the equations

(ψt + uψr + ψ2)r = 0, (ϕt + uϕr + ϕψ)r = 0, ut + uur + χr = 0.

Along with Eq. (2.3), these equations form a closed system for the functions u, ψ, ϕ, and χ of the variables r
and t that relates only the invariants of the group G. The number of independent variables in the system obtained
determines the rank of the studied partially invariant solution, which is equal to two. In this case, the defect of
the partially invariant solution [number of noninvariant desired functions w and p in the initial system (2.2)] is also
equal to two.

Let us show how to construct a new solution of the complete system (2.1) using the partially invariant
solution of the “reduced” system (2.2). According to the procedure described in Sec. 1, we assume that

u = U(r, t). (2.4)

As a result, the second and third equations of system (2.1) are integrable over z. Integration over z yields

w = Ψ(r, t)z + Φ(r, t); (2.5)

−p/ρ = (Ψt + UΨr + Ψ2)z2/2 + (Φt + UΦr + ΦΨ)z + X, (2.6)

where Φ, X, and Ψ are the desired functions r and t. In this case,

Ψ = −Ur − r−1U. (2.7)
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Substitution of expressions (2.4)–(2.6) for u, w, and p into the first equation of system (2.1) yields the
function Ω written as

Ω = −r3(λz2/2 + µz + ν), (2.8)

where
λ = (Ψt + UΨr + Ψ2)r; (2.9)

µ = (Φt + UΦr + ΦΨ)r; (2.10)

ν = Xr − Ut − UUr. (2.11)

We substitute expression (2.8) for Ω into the last equation of system (2.1) and equate the coefficients of the quadratic
trinomial in z to zero. As a result, we obtain three more equations

λt + Uλr + (2Ψ + 3r−1U)λ = 0; (2.12)

µt + Uµr + (Ψ + 3r−1U)µ+ Φλ = 0; (2.13)

νt + Uνr + 3r−1Uν = 0, (2.14)

which, along with Eqs. (2.7) and (2.9)–(2.11), form a closed system for seven functions (U , Ψ, Φ, X, λ, µ, and ν)
of the variables r and t. This system has a recurrent structure, which makes its analysis much simpler. Indeed,
Eqs. (2.7), (2.9), and (2.12) are related only by the functions U , Ψ, and λ. After these functions are determined,
the functions Φ and µ are found from system (2.10) and (2.13), and the functions ν and X are obtained from Eqs.
(2.14) and (2.11) solved in series. In this case, subsystems (2.10), (2.13), (2.14), and (2.11) are linear in the desired
functions Φ, µ, ν, and X, respectively. Without dwelling on the solution of the indicated subsystems, we shall focus
on the nonlinear system (2.7), (2.9), and (2.12) and showing that it can be reduced to a more standard form.

In system (2.7), (2.9), and (2.12), we convert from r to a new spatial variable — the Lagrangian coordinate
ξ defined by the relations

dr

dt
= U(r, t) for t > 0, r = a(ξ) for t = 0. (2.15)

Here a(ξ) is a function that satisfies the conditions a(ξ) ∈ C2[ξ1, ξ2], a(0) > 0, and a′(ξ) > 0 for ξ ∈ [ξ1, ξ2]; in
other respects, this is an arbitrary function (we shall handle this arbitrariness later). We introduce the notation
l(ξ, t) = λ[r(ξ, t), t] and f(ξ, t) = Ψ[r(ξ, t), t]. Elimination of the function Ψ from Eqs. (2.12) and (2.7) leads to the
equality

λt + Uλr + (−2Ur + U)λ = 0.

Converting to the new variables in the above equation and taking into account that λt +Uλr = lt, Ur = rξt/rξ, we
obtain the relation

lt/l + rt/r − 2rξt/rξ = 0,

which is integrated over t as

rl/r2
ξ = σ(ξ),

where σ is an arbitrary function of ξ. Omitting the insignificant case of σ = 0, we reduce consideration of the
neighborhood of each point where the function σ maintains sign to the case of σ = 1 or σ = −1 by converting to
a new variable ξ̃ defined by the relations dξ̃ = σ1/2(ξ) dξ or dξ̃ = [−σ(ξ)]1/2 dξ. In this case, only the right side
of the initial condition (2.15) changes but the new function ã(ξ̃) has the same properties as a(ξ) and the previous
notation (ξ and a instead of ξ̃ and ã) can be retained.

Thus, we obtained the equality l = σr−1r2
ξ , in which the quantity σ takes a value of 1 or −1. Converting to

Lagrangian coordinates in (2.9) and substituting the expression of l in terms of r and rξ into the equality obtained,
we have (ft + f2)ξ = σr−1r3

ξ . Another equation relating r and f is obtained by converting to new variables in
equality (2.7): rrξf = −(rrt)ξ. Introduction of the new desired function y(ξ, t) = r2/8 simplifies the resulting
system of equations for r and f , which takes the final form

yξt = −yξf ; (2.16)

(ft + f2)ξ = σy−2y3
ξ . (2.17)
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System (2.16) and (2.17) should be considered be hyperbolic although it was derived from the equations describing
the motion of an incompressible liquid. As is known, the system of Euler equations for an incompressible liquid
is compound: it has both real and complex characteristics. In the reduction of these equations, their hyperbolic
component is separated from the elliptic component, which facilitates analysis of the initial-boundary-value problem.
(We note that other hyperbolic models of motion for an incompressible liquid were studied in [2, 3].)

Elimination of f from system (2.16) and (2.17) yields the following forth-order hyperbolic equation for the
function y(ξ, t): (yξξ

yξ

)
tt

=
[(yξt

yξ

)2]
ξ
− σ

y3
ξ

y2
. (2.18)

The natural initial-boundary-value problem for (2.18) is the following:

y(ξ, 0) = y0(ξ), yt(ξ, 0) = y1(ξ), ξ1 6 ξ 6 ξ2; (2.19)

y(ξ1, t) = c1, y(ξ2, t) = c2, t > 0. (2.20)

Here ξ1, ξ2, and c2 > c1 > 0 are specified constants and y0(ξ) > 0 and y1(ξ) are specified functions.
Below, we assume that y0 ∈ C2[ξ1, ξ2] and y1 ∈ C1[ξ1, ξ2]; moreover, the compatibility conditions y0(ξi) = ci

and y1(ξi) = 0 (i = 1, 2) and the monotonicity condition y′0(ξ) > 0 for ξ ∈ [ξ1, ξ2] are satisfied. Conditions (2.19) and
(2.20) have a clear physical meaning. As follows from (2.19) and the relations r = 2(2y)1/2 and rt = U , the equalities
r = 2[2y0(ξ)]1/2 and rU = 4y1(ξ) are satisfied for t = 0. Excluding the parameter ξ from these equalities, we obtain
the initial distribution of the radial velocity component U(r, 0) = U0(r) for c21/8 6 r 6 c

2
2/8. Equalities (2.20) mean

that the nonpenetration conditions ri,t = U(ri, t) = 0 (i = 1, 2) are satisfied for ri = c2i /8 = const. This allows the
examined solution of the Euler equations to be treated as the one describing the motion in a cylindrical layer with
impermeable walls that arises from the specified initial state. This solution generalizes the well-known Aristov’s
solution [4] in two directions: first, unsteady motion is considered and, second, more importantly, according to
(2.8), the function Ω (squared rotational velocity circulation), is a full quadratic trinomial in z, whereas in [4], Ω is
proportional to z2.

Omitting a detailed analysis of problem (2.18)–(2.20), we only note that if the above-formulated conditions
of smoothness, compatibility, and monotonicity of the initial data of the problem are satisfied, the existence and
uniqueness theorem for the classical solution on a small time interval is valid for this problem. It is rather difficult
to obtain sufficient conditions of its solvability on an arbitrary interval [0, T ]. Moreover, the possibility that the
solution of problem (2.18)–(2.20) for certain initial data y0(ξ) and y1(ξ) decays over a finite time cannot be a priori
ruled out. It would be of interest to conduct numerical experiments to study the behavior of the solution of the
problem for larger t.

3. Concentrational Convection in a Plane Boundary Layer. In this section, u and v denote the
projections of the velocity onto the x and y axes of Cartesian coordinates, respectively, p is the difference between
the liquid pressure and hydrostatic pressure, c is the concentration of the inactive admixture, ν is the kinematic
viscosity of the liquid, D is the diffusion coefficient of the admixture, and g is the acceleration of gravity acting
in the negative x direction. The dependence of the liquid density ρ on the admixture concentration is considered
linear: ρ = ρ0(1− αc). It is assumed that the parameters ν, D, g, and ρ0 are positive constants. The parameter α
is also assumed to be constant, but its sign can be arbitrary.

The equations of unsteady convection in a plane boundary layer are written as

ut + uux + vuy = −ρ−1
0 px + νuyy + gαc,

py = 0, ux + vy = 0, ct + ucx + vcy = Dcyy.
(3.1)

The “reduced” system corresponds to the motion of a homogeneous liquid. Setting c = 0 in (3.1), we obtain the
classical equations of an unsteady plane boundary layer:

ut + uux + vuy = −ρ−1
0 px + νuyy, py = 0, ux + vy = 0. (3.2)

System (3.2) admits the group G with the basis operators {∂t, ∂y, x∂x + u∂u + 2p∂p}. The basis of the invariants
of the group G is as follows: I1 = x−1u, I2 = v, and I3 = x−2p. Since it does not include invariants that do not
contain the desired functions, system (3.2) does not have regular partially invariant solutions with respect to the
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group G. Ondich [5] constructed an irregular partially invariant solution of (3.2) on the group G by relating the
invariants I1 and I2 by an equality, i.e., by setting

v = x−1u. (3.3)

Substitution of Eq. (3.3) into the last equation in system (3.2) yields the following representation of the function u:

u = ψ(xe−y, t). (3.4)

Substituting Eq. (3.3) and (3.4) into the first equation in system (3.2) and denoting ξ = xe−y, we obtain the
following relationship between the functions ψ and p:

ψt = −ρ−1
0 px + ν(ξ2ψξξ + ξψξ).

Eliminating the function p from the last equality by differentiating it with respect to y, we arrive at the following
equation for the function ψ:

ψξt = ν(ξ2ψξξξ + 3ξψξξ + ψξ).

This is a linear equation and it admits separation of variables, which allowed us to find a number of exact solutions
of this equation [5]. A solution of the general Cauchy problem for this equation can be constructed by applying the
Mellin transform.

We now consider the full system (3.1) and will seek its solution in which the relation between the velocity
components has the previous form of (3.3) and the representation

u = Ψ(xe−y, t) (3.5)

contains a function Ψ(ξ, t) that generally does not coincide with ψ(ξ, t). Substitution of Eq. (3.5) and (3.3) into the
first equation of system (3.1) yields the equality

Ψt = −ρ−1
0 px + ν(ξ2Ψξξ + ξΨξ) + gαc,

which, in turn, yields the representation

c = (gα)−1[ρ−1
0 px + q(ξ, t)], (3.6)

where the function q is linked to Ψ by the relation

Ψt = ν(ξ2Ψξξ + ξΨξ) + q. (3.7)

Substituting Eqs. (3.3), (3.5), and (3.6) into the last equation in system (3.1), we obtain the closing relation between
the functions Ψ, q, and p:

qt + ρ−1
0 (pxt + pxxΨ) = D(ξ2qξξ + ξqξ). (3.8)

So far, we have not impose restrictions on the function p(x, t). Now we choose this function such that the left side
of Eq. (3.8) is a function of the variables ξ and t. For this, it suffices to set

p = ρ0[β(t) + γ(t)x+ δ(t)x2], (3.9)

where β, γ, and δ are arbitrary functions of t. Substitution of (3.9) into (3.8) yields

qt + γ̇(t) + 2δ(t)Ψ = D(ξ2qξξ + ξqξ). (3.10)

Thus, a new solution of the equations of unsteady concentrational convection in a plane boundary layer was
constructed on the basis of the well-known partially invariant solution of the equations of a dynamic boundary layer.
In this solution, the pressure expressed by formula (3.9) depends quadratically on x, whereas in the solution given
in [5], this dependence is not more than linear. The velocity fields and concentrations in the solution constructed are
specified by equalities (3.3), (3.5), and (3.6), where the functions Ψ and q satisfy system (3.7), (3.10). Being linear,
this system admits separation of variables. For this system, the natural formulation of the initial-boundary-value
problem is given by

Ψ(ξ, 0) = Ψ0(ξ), q(ξ, 0) = q0(ξ), ξ > 0,

|Ψ| <∞, |q| <∞ for ξ → 0 and ξ →∞.

Without discussing the resolvability conditions for the given problem, we only note one characteristic feature
of the solution of system (3.1), which is also inherent in the solution of system (3.2) derived by Ondich: because of
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the specific dependence of the function u on y given by formula (3.5) or (3.4), the attachment condition u = 0 cannot
be satisfied for y = 0 (and for any y = const). This prevents the use of this solution to describe concentrational
convection in the vicinity of a rigid vertical wall. However, this solution can be used in some other cases, for
example, in problems of mixing layers or submerged jets. In addition, this solution can find an application as a
test for numerical integration of system (3.1). Besides nonlinearity and strong degeneration, this system implicitly
contains the small parameter ν−1D; i.e., it is, in fact, a singularly perturbed system (for real liquids, the ratio of D
to ν does not exceed 10−3). In such situations, the existence of meaningful exact solutions is of great importance.

4. Thermal Convection in a Rotating Layer of a Viscous Liquid. In this section, the initial equations
are as follows:

ut + uur + wuz − 2ωv − v2/r = −pr/ρ0 + ν(urr + ur/r − u/r2 + uzz)− ω2βrT,

vt + uvr + wvz + 2ωu+ uv/r = ν(vrr + vr/r − v/r2 + vzz),

wt + uwr + wwz = −pz/ρ0 + ν(wrr + wr/r + wzz),
(4.1)

ur + u/r + wz = 0, Tt + uTr + wTz = χ(Trr + Tr/r + Tzz).

Equations (4.1) describe the thermal convection of a viscous incompressible liquid assuming rotationally
symmetric motion. They are written in a coordinate system rotating at constant angular velocity ω relative to the
initial inertial system. The rotation axis coincides with the z axis of the cylindrical coordinate system (r, θ, z). We
use u, v, and w to denote the radial and axial velocity components and the deviation of the rotational velocity
component from the velocity of rigid-body rotation ωr, respectively. The quantity p characterizes the deviation of
the pressure from the equilibrium value ρ0ω

2r2/2, and the quantity T is the temperature deviation from a certain
average value. The positive parameters ρ0, ν, β, and χ have the following physical meaning: ρ0 is the liquid density
at a constant temperature (T = 0), ν is the kinematic viscosity coefficient, β is the volumetric thermal-expansion
coefficient of the liquid, and χ is the thermal conductivity.

A “reduced” system is derived from Eq. (4.1) if we set T = 0 in the first equation and discard the last
equation. This system describes the rotationally symmetric motion of an isothermally viscous incompressible liquid
and admits solutions of the form

u = rf(z, t), v = rg(z, t), w = w(z, t), p = K(t)r2/2 + h(z, t), (4.2)

which are generalizations of the well-known von Kármán solution. The theoretical-group nature of solution (4.2) is
rather nontrivial: similarly to the von Kármán solution, it is an invariant solution of a partially invariant submodel
of the full (three-dimensional) Navier–Stokes equations. This submodel is generated by the four-parameter group
formed by two translations along the x1 and x2 Cartesian coordinate axes and two Galilean translations along the
same axes [6].

Applying the above-described method to (4.2), one can obtain a solution of system (4.1) in the form

p = K(t)r2/2 +Aρ0βω
2((r2/2) ln (r/a)− r2/4) + h(z, t), T = A ln (r/a) + S(z, t),

where A and a are constants having dimensions of temperature and length, respectively; the velocity field preserves
the form of (4.2); and the functions f , g, w, and h are determined simultaneously with the function S. The system
for determining these functions is written as

ft + wfz − 2ωg + f2 − g2 = −ρ−1
0 K + νfzz − ω2βS, gt + wgz + 2ωf + 2fg = νgzz,

2f + wz = 0, St + wSz +Af = χSzz, wt + wwz = −ρ−1
0 hz + νwzz.

(4.3)

The form of the solution obtained suggests its possible physical interpretation. The liquid fills the layer between
rigid planes z = ±a rotating at angular velocity ω around the z axis. The attachment condition is satisfied on the
planes. Drains or heat sources of constant linear density −2πAk (k is the of thermal conductivity of the liquid)
are distributed along the rotation axis. The planes bounding the flow are heat insulated. At the initial time, the
velocity distribution over the layer is specified by formulas (4.2). These conditions induce the following formulation
of the initial-boundary-value problem for system (4.3):

f = g = w = 0, Sz = 0 for z = ±a, t > 0; (4.4)

f = −w′0(z)/2, g = g0(z), w = w0(z), S = S0(z) for |z| 6 a, t = 0, (4.5)
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where w0, g0, and S0 are specified functions of z. If the natural smoothness and compatibility conditions imposed
on the indicated functions are satisfied, problem (4.3)–(4.5) has a classical solution at least on a small time interval
[0, τ ]. This solution is unique with accuracy to addition of an arbitrary function of t to h.

In conclusion, we note that for any governing parameters, system (4.3) has a trivial solution in which all the
desired functions are zero. This solution describes the equilibrium of a uniformly rotating liquid in an infinite layer
whose boundaries are rigid impermeable heat-insulated planes, and drains and heat sources with constant linear
density are distributed along the rotation axes. It can be shown that for sufficiently large positive values of the
parameter A, the trivial solution is unstable.

The results of this paper were reported at the 3rd International Conference “Symmetry and Differential
Equations” (Krasnoyarsk, August 2002) and at Ovsyannikov’s seminar. The author thanks L. V. Ovsyannikov and
the seminar participants S. V. Golovin, S. V. Meleshko, and A. P. Chupakhin for their attention to the work and
helpful discussions and thanks E. Yu. Meshcheryakova for assistance in preparing the manuscript of the paper.
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